The debate as to whether or not the human brain is computable has been a topic of discussion among scientists and technologists for quite some time. Leading scientists, such as Miguel Nicolelis, argue against such possibilities. Nicolelis, Duke school of Medicine Distinguished Professor of Neuroscience and founder of the Walk Again Project, insists that computers will never replicate the human brain. In his opinion, replicating human consciousness is impossible because vital features of consciousness are the result of unpredictable, nonlinear interactions among billions of cells.
As more and more artificial intelligence technologies are being built by top companies such as IBM and Google, however, some worry he’ll be proven wrong. Renowned physicist, Stephen Hawking has said that artificial intelligence “could spell the end of the human race.” Inventor and engineer, Elon Musk, has said that artificial intelligence “is the most existential threat that we face” and that “with artificial intelligence, we are summoning the demon.” Scientists are worried they could lose control to a powerful enough AI, creating a threat to mankind.
Although Nicolelis believes that the human brain is non-computable, he knows first-hand that computers have the brainlike ability to interpret the neural activity and perform actions on its behalf. This is called brain-machine interface technology, which differs from artificial intelligence in that it supplements thoughts already made by the human brain and carries out actions. Alternatively, artificial intelligence reproduces human cognition and functions independently from the human brain. Nicolelis is currently working to create brain-machine interface technology to aid in therapy for those suffering from spinal cord injuries.
While futurists express concern about how powerful tech could harm us, technologies like this prove that such innovations can be an enormous help to humans that are struggling. They also present a unique opportunity for humans to mitigate the threat of AI by becoming more computer-like ourselves.
Miguel Nicolelis’ Walk Again Project has developed a brain-machine interface that interprets what the user wants based on their brain activity and turns that activity into commands that work to perform an action, such as moving an arm up or stepping a foot forward. This technology uses an electroencephalography (EEG) cap instead of an implanted electrode to read a patient’s brain activity. Nicolelis and his team at Duke University used this technology in conjunction with an exoskeleton suit that moves usings hydraulic pumps and brainpower. The first ceremonial kick at the 2014 World Cup was made by a paralyzed man, using this technology.
Patients who suffer from paralysis as a result of spinal cord injuries or neurodegenerative diseases are often robbed of their ability to effectively communicate with those around them. In an effort to improve their quality of life, the BrainGate team has developed a brain-machine interface. By implanting a tiny, neural prostheses directly into the brain, patients with spinal cord injuries can search the Internet, a simple task that was impossible before the introduction of this technology. A neural prostheses works by detecting neural signals associated with intent, which can be decoded by advanced algorithms. The patient’s brainwaves essentially control where to “tap” on the screen of a tablet. Over time, scientists will work to perfect this form of brain-machine interface so that patients with paralysis from spinal cord injury can enjoy greater functionality.
If brain-machine interfaces can lend brain power to those who are not able-bodied, it stands to reason that they can augment the neural abilities of, well, anyone. It should come as no surprise, then, that the U.S. military is also researching and developing ways to use brain-machine interface technology. The Silent Talk Helmet is being produced as an initiative of the Defense Advanced Research Projects Agency (DARPA) and is funded by the U.S. government. Using brain-machine interface technology, the helmet will allow soldiers to communicate with one another silently using their thoughts. The technology will detect an individual’s word-specific neural impulses, which will be analyzed and delivered to the soldier on the receiving end. While the Silent Talk Helmet technology is still in it’s early stages, DARPA is proposing another brain-machine interface technology in the form of binoculars. These will help detect targets and increase the field of view for the soldier. S
Such brain-machine interfaces will help soldiers perform at their peak level. If you ever had to compete with an AI, these abilities would certainly lend you an edge. According to Elon Musk, a “neural lace” that allows humans to communicate with computers could help society to “achieve a symbiosis between human and machine intelligence, and maybe solve[s] the control problem and the usefulness problem.” In other words, it would balance the playing field and potentially halt some job automation.
While many of these human-brain interfaces are still in their early stages, it won’t be long before neurologists and scientists perfect these technologies so that they can be used long-term — Musk is already working on a solution that would make us all more cyborg-like than we already are. The potential for even more technologies to be developed, which will assist and lend power to humans, is huge. Still, the more advanced brain-machine intelligence gets, the more credibility is lent to the fears of AI skeptics. If a computer can express what the brain is thinking, how long before it can imitate it? Are brain-machine interfaces enough to compete with AI, if the brain turns out to be computable after all?
Only time will tell, but for now, I believe this technology gives us more reason for hope than terror.