A single atom layer of carbon isolated by an ingenious scientist armed with a piece of Scotch tape, that proves to be the thinnest, strongest and most flexible material ever created? You might be thinking that this sounds like something straight out of science fiction. But in an age where Jetsons-like technology is becoming more of a reality every day, one nanomaterial rises above the rest to bring an astonishing array of game changing applications to our lives.
We’re talking about graphene: an overachiever stronger than diamond, thinner than a sheet of paper, and more conductive than copper. It’s fitting, then, that the nanomaterial spurred over 25,000 patents for world-changing applications since its discovery in 2003. It even nabbed the Nobel Prize in Physics for its inventor, Sir Andre Geim. So why aren’t more people familiar with graphene?
While the science world was immediately awed by the limitless potential of graphene to change the world more than any material since plastic, the methods and costs of producing graphene on a large scale have proven to be quite a challenge. Fortunately, recent breakthroughs in production methods have reduced graphene production timelines and costs significantly—meaning the nanomaterial’s potential is about to be realized on a huge scale. Here are just five ways we can expect to see sci-fi-like technology becoming part of our world in the near future:
1. Airships to Deliver Houses to Remote Areas
Scientists have been enamored with the idea of airships since the first hydrogen air balloon made it across the English Channel in 1795. While passenger dirigibles gained popularity in the early 1900s, the Hindenburg disaster in 1937 crushed public confidence in airship travel.
Fast forward to 2016 and helium airships are hitting the market powered by supercapacitors fitted with curved graphene. The main advantage of airships over helicopters and planes is their ability to lift off and land without a runway, making them particularly useful for carrying heavy equipment to remote areas. Supercapacitor manufacturer Skeleton Technologies has teamed up with French startup Flying Whales to build a 60-ton large capacity airship designed to transport prefab houses and other large objects, like wind turbines, to remote areas. An electric propulsion system leaves a much smaller environmental footprint at a lower cost. Houses delivered by airship? Sounds sci-fi, but we can expect to see industrial production as soon as 2020.
2. Robots to Clean the Ocean
Unless we do something drastic to reverse the trend, by 2050 there could be more plastic waste than fish in the world’s ocean. While scientists have been testing viable options for cleaning water pollution for years, a recent breakthrough has led to a promising new solution in the form of graphene robots. While a swarm of graphene coated nanobots capable of cleaning lead from wastewater sounds pretty sci-fi, that’s exactly what an international team of scientists have recently developed.
According to a paper published in the journal Nano Letters, these revolutionary nanobots could remove 95% of toxic lead present in a body of water in just one hour. Even more impressive, these microscopic robots can be reused after being stripped of the collected lead ions through an acidic bath. Further testing will focus on expanding their hovering abilities to additional metal pollutants. The bots utilize a graphene oxide exterior to absorb lead or other heavy metals, a nickel core that allows scientists to control the bots’ movement via magnetic field, and an inner platinum coating that reacts with hydrogen peroxide to create an “engine” that self-propels the bots forward through the water. This is a huge breakthrough demonstrating nanotechnology’s potential environment-saving applications.
3. Solar Panels to Store Energy When It’s Raining
Solar panels have grown increasingly efficient as a means of storing energy, but their dependence on the sun makes them impractical for daily energy needs on a global scale. Enter graphene’s amazing conductivity, which a team of scientists in Qingdao, China are exploiting to develop a new kind of prototype solar cell that generates power from raindrops.
By coating solar cells with a layer of liquefied graphene, scientists found that raindrops—which contain positively charged ions—adhered to the graphene surface and stacked to form layers with a potential energy difference between them strong enough to produce electrical current.
The prototype still needs refining, but the potential applications for solar energy in areas with extended rainy seasons and limited access to traditional energy sources will be game changing.
4. Electrodes to Build Better Brains
Researchers at the University of Trieste in Italy and the Cambridge Graphene Centre have demonstrated how graphene could be used to make better brain electrodes to treat various medical conditions like motor disorders and paralysis. When embedded in the human brain, these electrodes would interface with nerve cells without damaging the cells’ integrity.
Again, it’s graphene’s amazing conductivity that comes into play here, making it a natural winner for electrodes. Traditionally electrodes have been made out of tungsten or silicon, which lose their conductivity over time, as scar tissue forms over the area of implant. Graphene’s ability to withhold conductivity makes it a very promising material for the future of deep brain implants, which may hold the key to breakthrough treatments for Parkinson’s and other degenerative diseases.
5. Computers Operating at the Speed of Light
Silicon Valley is starting to worry that the end of Moore’s Law is in sight now that chip technology is just a few years away from scientists being able to manipulate materials on the atomic level. It’s hard to get much smaller than an atom, so maybe the solution lies in a new material that will dethrone silicon. Graphene is a contender, but it’s limited by the fact that it has no bandgap in its molecular structure, making it difficult to retain data in addition to sending it at super fast speeds. For now, IBM believes carbon nanotubes may be a better chip alternative.
However, graphene could upend the entire industry by moving us from electric to light powered computers. Since photons can move information much more quickly than electrons, many believe the future of computing lies in optic technology. Once scientists solve the complex optic computing puzzle, we can expect to see graphene as a main player in our future devices. Bendable smartphones are just the beginning.
Into the Sci-Fi Future
Now that graphene has promised to carry our houses, clean our oceans, make energy from raindrops, upgrade our brains, and supercharge our computers, we’re really not that far away from a Jetsons-like future. Now we just need flying cars to commute to our three day workweeks.