A group of scientists from the U.S. and South Korea recently published that they have demonstrated an on-chip visible light using graphene–a first of its kind. The group, led by postdoctoral research scientist Young Duck Kim, connected small graphene strips to electrodes. From there, the strips were placed above a substrate as they passed light through filaments, heating the strips. Kim is joined by a team that includes his James Hone-group at Columbia University as well as Seoul National University and Korea Research Institute of Standards and Science.

The full findings can be found in the group’s report, Bright Visible Light Emission from Graphene.

James Hone went on to elaborate to Phys.org how the new findings could lead to paving the way for, “atomically thin, flexible, and transparent displays, and graphene-based on-chip optical communications.” Hone attributed those potential technological advancements to what they consider a “broadband light emitter.”

Pardon the pun but the future looks bright in this sector as this helps bridge the gap in developing light circuits that emulate a semiconductor’s electric currents. By having graphene taking over the role of the filament, the team should be able to put the incandescent light onto a chip. This has been impossible to this point due to the filament’s inability to reach the needed temperatures–above 2500 degrees Celsius–to visibly glow. By having the graphene in that role, not only is the temperature issue eradicated, the likelihood of damaging a chip is reduced when using the carbon.

The group’s work continues as they try to advance the field further. At this time, their efforts are focused on characterizing device performance to determine ideal integration techniques. Hone further added, “We are just starting to dream about other uses for these structures—for example, as micro-hotplates that can be heated to thousands of degrees in a fraction of a second to study high-temperature chemical reactions or catalysis.”

2015 is shaping up to be a year for advancements in graphene research. What remains to be seen is if graphene turns out to become the material that revolutionizes several facets of innovation. It certainly is shaping up to become that sort of material. However, other “super materials” could eventually become the preferred material in nanoscale electronics. These transition-metal dichalcogenides (TMDCs) have a significant advantage over graphene in that many of the TMDCs are semiconductors. Another reality that is probably is that several 2D materials will serve as the primary materials to work with, as each has its own properties.

Regardless, graphene holds supremacy at the moment. Because of this, we should expect to see more innovation coming throughout the weeks and months. With this latest finding, graphene further entrenches itself in the fabric of innovation in the modern era. The work conducted by Kim, Hone, their team and countless other researchers could allow for significant growth in the coming years.

Image: Flickr/University of Exeter